닫기

연구

Research Outcome

미래를 창조하는 포스텍 화학공학과

Designing a Highly Active Metal-Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Doping-Site Position

Title of paper
Designing a Highly Active Metal-Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Doping-Site Position
Author
[이진우교수 연구실]
Publication in journal
Angewandte Chemie International Edition 54, pp 9230-9234 (June 2015)
Publication date
20150618
[Abstract]
To promote the oxygen reduction reaction of metal-free catalysts, the introduction of porous structure is considered as a desirable approach because the structure can enhance mass transport and host many catalytic active sites. However, most of the previous studies reported only half-cell characterization; therefore, studies on membrane electrode assembly (MEA) are still insufficient. Furthermore, the effect of doping-site position in the structure has not been investigated. Here, we report the synthesis of highly active metal-free catalysts in MEAs by controlling pore size and doping-site position. Both influence the accessibility of reactants to doping sites, which affects utilization of doping sites and mass-transport properties. Finally, an N,P-codoped ordered mesoporous carbon with a large pore size and precisely controlled doping-site position showed a remarkable on-set potential and produced 70% of the maximum power density obtained using Pt/C.
DOI: 10.1002/anie.201501590