닫기

연구

Research Outcome

미래를 창조하는 포스텍 화학공학과

Evaporated nanometer chalcogenide films for scalable high-performance complementary electronics

Title of paper
Evaporated nanometer chalcogenide films for scalable high-performance complementary electronics
Author
[노용영교수님 연구실] 대면적 고성능 상보형 전자소자를 위한 나노단위 칼코젠 증착 박막
Publication in journal
Nature Communications 13, 6372 (2022).
Publication date
20221026

 

[Abstract]
 
The exploration of stable and high-mobility semiconductors that can be grown over a large area using cost-effective methods continues to attract the interest of the electronics community. However, many mainstream candidates are challenged by scarce and expensive components, manufacturing costs, low stability, and limitations of large-area growth. Herein, we report wafer-scale ultrathin (metal) chalcogenide semiconductors for high-performance complementary electronics using standard room temperature thermal evaporation. The n-type bismuth sulfide delivers an in-situ transition from a conductor to a high-mobility semiconductor after mild post-annealing with self-assembly phase conversion, achieving thin-film transistors with mobilities of over 10 cm2 V−1 s−1, on/off current ratios exceeding 108, and high stability. Complementary inverters are constructed in combination with p-channel tellurium device with hole mobilities of over 50 cm2 V−1 s−1, delivering remarkable voltage transfer characteristics with a high gain of 200. This work has laid the foundation for depositing scalable electronics in a simple and cost-effective manner, which is compatible with monolithic integration with commercial products such as organic light-emitting diodes. 
 

DOI: 10.1038/s41467-022-34119-6

Link: https://www.nature.com/articles/s41467-022-34119-6