• on
  • off
  • off
  • off
4
3
2
1

연구

QUICK BANNER

  • 소식지
  • Research Outcome
  • 취업정보
  • 학과를 위한 기부

> 연구분야 > Research Outcome

Research Outcome


 
Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%)
Title of paper Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%)
Author [박태호교수 연구실]
Publication in journal ACS Energy Lett., 2017, 2, pp 2667–2673
Publication date 2017-10-25

[Abstract]
Understanding and controlling interfacial charge transfer at the heterojunction of optoelectronic devices is currently receiving extensive interest. Here, we study the parameters that can influence the electron extraction in planar perovskite solar cells (P-PSCs) using spin-coated SnO2 and TiO2, anodized-TiO2 (a-TiO2), and bilayered electron transport layers (ETL) composed of SnO2 and TiO2 or SnO2 on a-TiO2 (SnO2@a-TiO2). These are the varied free energy difference (ΔG) values between the ETL and perovskites, electron mobility (μe) of the ETL, and quality of physical contact between the ETL and fluorine-doped tin oxide (FTO). Among the various ETLs, the bilayered ETL (SnO2@a-TiO2) gives a large ΔG as well as defect-free physical contact. The resulting P-PSC exhibits a PCE of 21.1% and stabilized efficiency of 20.2% with reduced hysteresis. This result emphasizes that a large free energy difference (ΔG) value plays an important role in electron extraction. More importantly, the defect-free physical contact is also crucial for achieving improved electron extraction.
 
DOI: 10.1021/acsenergylett.7b00888