• on
  • off
  • off
  • off
4
3
2
1

연구

QUICK BANNER

  • 소식지
  • Research Outcome
  • 취업정보
  • 학과를 위한 기부

> 연구분야 > Research Outcome

Research Outcome


 
High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates
Title of paper High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates
Author [박찬언·박태호 교수 연구팀]
Publication in journal Journal of the American Chemical Society 138(26),pp8096-8103 (July 2016)
Publication date 2016-07-06

 
[Abstract]
Charge carriers typically move faster in crystalline regions than in amorphous regions in conjugated polymers because polymer chains adopt a regular arrangement resulting in a high degree of π–π stacking in crystalline regions. In contrast, the random polymer chain orientation in amorphous regions hinders connectivity between conjugated backbones; thus, it hinders charge carrier delocalization. Various studies have attempted to enhance charge carrier transport by increasing crystallinity. However, these approaches are inevitably limited by the semicrystalline nature of conjugated polymers. Moreover, high-crystallinity conjugated polymers have proven inadequate for soft electronics applications because of their poor mechanical resilience. Increasing the polymer chain connectivity by forming localized aggregates via π-orbital overlap among several conjugated backbones in amorphous regions provides a more effective approach to efficient charge carrier transport. A simple strategy relying on the density of random copolymer alkyl side chains was developed to generate these localized aggregates. In this strategy, steric hindrance caused by these side chains was modulated to change their density. Interestingly, a random polymer exhibiting low alkyl side chain density and crystallinity displayed greatly enhanced field-effect mobility (1.37 cm2/(V·s)) compared with highly crystalline poly(3-hexylthiophene).
 
DOI: 10.1021/jacs.6b01046